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Abstract:

Background:

Cancer continues to rank among the leading causes of global mortality, with liver, breast, kidney, and brain
malignancies presenting some of the most complex therapeutic challenges. Conventional treatments such as
chemotherapy, radiotherapy, and targeted agents are constrained by tumor heterogeneity, systemic toxicity, and
the emergence of drug resistance.Aim:
This systematic review evaluates advancements in nanomedicine between 2019 and 2024, focusing on
translational innovations for liver, breast, kidney, and brain cancers. Special emphasis is placed on preclinical
breakthroughs, clinical trial outcomes, and the integration of artificial intelligence (Al) and microfluidics in
developing patient-specific therapeutic platforms. Methods:
Following PRISMA guidelines, an extensive literature search was conducted across PubMed, Scopus, Web of
Science, and ClinicalTrials.gov. Eligible studies included preclinical models, phase I-III clinical trials, and
translational research on nanomedicine-based interventions for the selected cancers. Data were extracted on
nanocarrier type, targeting strategy, and mechanism of action, efficacy, safety, and translational readiness. Al-
driven design approaches and microfluidics-enabled synthesis platforms were also analyzed for their role in
accelerating optimization and personalization. Result:Preclinical studies demonstrated the efficacy of multistage
targeting nanocarriers incorporating passive, active, and hierarchical mechanisms, as well as stimuli-responsive
systems triggered by tumor microenvironmental cues (pH, enzymatic activity, and hypoxia). Biomimetic
nanoparticles, including cell membrane-coated carriers, showed enhanced immune evasion and tumor homing.
Clinically validated examples such as liposomal doxorubicin, nanoparticle albumin-bound paclitaxel, and
receptor-targeted polymeric nanoparticles reported improved tumor response rates, reduced off-target toxicity, and
favorable safety profiles. Theranostic platforms integrating imaging and therapy enabled real-time monitoring and
adaptive treatment strategies. Al algorithms facilitated predictive modeling of nanoparticle—tumor interactions,
optimization of ligand density, and payload release kinetics, while microfluidics ensured scalable, reproducible
manufacturing and organ-on-chip-based preclinical validation.Conclusion:Nanomedicine has transitioned from
experimental proof-of-concept to a viable clinical reality in oncology, offering unprecedented precision,
adaptability, and multifunctionality. The integration of Al-driven design and microfluidic fabrication is
accelerating the translation of nanocarriers into patient-specific therapies, with the potential to overcome long-
standing barriers in drug delivery. These advances mark a paradigm shift toward data-driven, personalized
nanomedicine, positioning it as a cornerstone of next-generation cancer care.

Keywords: Nanomedicine, Cancer therapy, Liver cancer, Breast cancer, Kidney cancer, Brain cancer, Multistage
targeting, Biomimetic nanoparticles, Stimuli-responsive drug delivery, Theranostics, Artificial intelligence,
Microfluidics, Patient-specific oncology, Translational nanomedicine, Precision oncology.
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1. Introduction

Cancer continues to be one of the most formidable health challenges of the modern era,
claiming millions of lives each year and imposing a heavy physical, emotional, and economic
toll on patients, families, and healthcare systems. While traditional approaches such as
chemotherapy, radiotherapy, surgery, and targeted drugs have significantly improved patient
outcomes over the past decades, they are far from perfect !. Limitations including tumor
heterogeneity, low drug selectivity, systemic toxicity, and the emergence of multidrug
resistance often lead to incomplete responses and high relapse rates 2.

These challenges are particularly acute when treating tumors located in hard-to-reach or
biologically protected sites, such as brain cancers shielded by the blood brain barrier, liver
cancers subjected to rapid drug metabolism, and kidney tumors with unique
microenvironmental barriers.> Aggressive breast cancers, prone to early metastasis and
frequent recurrence, further underscore the urgent need for next-generation therapeutics
capable of breaking through these biological defences *.

In this context, nanomedicine has emerged as a disruptive force in oncology, offering the
promise of targeted, multifunctional, and adaptive therapeutic strategies °. By leveraging
nanoscale engineering, drug-loaded nanoparticles, smart nanocarriers, and biomimetic delivery
systems can navigate complex physiological barriers, concentrate therapeutics at tumor sites,
and reduce collateral damage to healthy tissues . This precision-oriented approach not only
enhances treatment efficacy but also opens the door to integrating therapeutic and diagnostic
(theranostic) functions within a single platform ’.

Over the past five years, research in translational nanomedicine has accelerated, with numerous
innovations advancing from bench to bedside ®. Despite numerous advancements in
conventional therapies such as chemotherapy, radiotherapy, and targeted drugs, these
modalities face considerable limitations. Tumor heterogeneity, poor drug selectivity, systemic
toxicity, and the challenge of drug resistance are significant barriers that hinder lasting curative
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outcomes. For instance, conventional drugs often show limited effectiveness in targeting deep-
seated tumors or metastatic lesions particularly in challenging organs like the brain, liver, and
kidneys as well as in aggressive breast cancers, where recurrence is frequent. The limitations
for each of these cancer types are summarized in Table 1, while Figure 1 illustrates the major
physiological barriers and challenges associated with conventional treatments, highlighting the
rationale for nanomedicine-based interventions. These cancer types have become focal points
for nanomedicine innovation due to their biological complexity, high mortality rates, and
unmet clinical needs °.

The purpose of this systematic review is to critically evaluate developments in translational
nanomedicine for these cancers between 2019 and 2024. This includes a detailed examination
of preclinical breakthroughs, underlying mechanisms of action, and the translation of
experimental findings into clinical applications '°. Special attention is given to assessing
therapeutic efficacy, safety profiles, and real-world feasibility, with the ultimate goal of
identifying promising strategies that could redefine cancer treatment and improve long-term
patient outcomes .

Table 1: Limitations of Conventional Cancer Therapies across Selected Organs

Cancer Conventional Thera
.. py Special Challenges Reference
Type Limitations
Liver Drug metabolism & resistance Tumor heterogeneity 12
Recurrence, metastasis, limited Hormonal influence, dense
Breast .. 13
selectivity stroma
Kidney Poor penetration, toxicity Hypoxia, renal clearance 14
) . . .. Drug delivery, protective
Brain Blood-brain barrier, neurotoxicity & ry P 15
barriers
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Figure 1: illustrates the physiological barriers and challenges encountered by conventional
therapies in each selected organ liver, breast, kidney, and brain and highlights the rationale for
Nano medicine-based interventions.

2. Methodology

The methodology of this systematic review was designed to ensure rigorous and transparent
synthesis of current evidence in translational nanomedicine for cancer therapy, focusing on
liver, breast, kidney, and brain cancers from 2019 to 2024. The review protocol followed
PRISMA guidelines, enabling reproducibility and minimizing bias during the selection and
appraisal of studies.

A comprehensive literature search was performed across multiple scientific databases,
including PubMed, Scopus, Web of Science, and ClinicalTrials.gov. The search strategy
incorporated relevant keywords such as Nano medicine, nanoparticle, cancer therapy,
clinical trial, liver cancer, breast cancer, kidney cancer, brain cancer, and 2019 2024. Only
studies published in English within the defined timeframe were considered. Additional articles
were identified by screening the references of included papers to capture important
developments.

The study selection process involved a two-step review: initial screening of titles and abstracts
for relevance, followed by full-text evaluation against predefined inclusion and exclusion
criteria (Table 2). Eligible studies comprised preclinical research (including in vitro and animal
models), clinical trials (phases I III), and translational investigations that addressed
nanomedicine-based interventions in the selected cancers. Exclusion criteria included
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conference abstracts, reviews, non-original data, and studies outside the target timeframe or
cancer types. The overall process of identification, screening, eligibility assessment, and
inclusion is summarized in Figure 2.

Data extraction was performed using standardized forms, collecting information on publication
year, cancer type, nanomedicine platform, study design, primary outcomes (e.g., efficacy,
safety, survival metrics), and notable translational hurdles encountered. The quality and risk of
bias for clinical studies were assessed with the Cochrane Risk of Bias tool, while preclinical
studies were appraised with the SYRCLE risk-of-bias criteria. Discrepancies during extraction
and assessment were resolved by consensus between reviewers to uphold methodological
integrity.

The scope of this review encompassed the translational journey from preclinical innovation to
human clinical trials, with special emphasis on challenges in moving from laboratory findings
to practical therapeutic applications. Results were synthesized both qualitatively and, where
datasets allowed, quantitatively to reflect mechanistic insights, clinical outcomes, and
strategies for overcoming translational barriers.

Table 2: Systematic Review Inclusion and Exclusion Criteria

Criteria Inclusion Exclusion
Timeframe 2019 2024 Before 2019, after 2024
Language English Non-English
Cancer Types Liver, breast, kidney, brain Other cancers
Study Preclinical (in vitro/in vivo), Reviews, conference abstracts,
Designs clinical editorials
Intervention Nanomedicine-based therapies Non-nanomedicine therapies
Data Type | Original research, clinical outcomes Non-original data
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Figure 2. PRISMA 2020 flow diagram of study selection for the systematic review. The
diagram outlines the identification, screening, eligibility assessment, and inclusion of studies
from 2019 to 2024, highlighting the number of records retrieved from databases, removed as

duplicates, excluded after screening, and finally included in the review.

3. Preclinical Innovations in Nanomedicine

Recent advances in nanomedicine have significantly transformed the preclinical approach to
cancer therapy, introducing highly engineered nanoparticles capable of precise drug delivery
at the organ, tissue, cellular, and even organelle level. '® These next-generation nanocarriers
are designed to combine multiple targeting strategies, including passive targeting via the
enhanced permeability and retention effect, active targeting through receptor-specific ligands
or antibodies, and hierarchical multistage targeting that sequentially directs the therapeutic
payload from tissue to cell to subcellular compartments !"-!®. Stimuli-responsive nanocarriers
further enhance treatment precision by altering their size, surface charge, hydrophobicity, or
ligand presentation in response to tumor-specific physiological cues such as acidic pH, high
glutathione levels, hypoxia, or enzymatic activity. This adaptive behavior improves penetration
into dense tumor tissues, facilitates efficient cellular uptake, and enables site-specific drug
release while reducing systemic toxicity 2! (Figure 3).
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Preclinical evaluation of these platforms employs a combination of in vitro cancer cell lines,
orthotopic tumor models, and patient-derived xenografts to assess biodistribution, tumor
accumulation, uptake mechanisms, and therapeutic performance. In liver cancer, ligand-
functionalized nanoconjugates targeting overexpressed receptors such as EGFR and folate
receptors have demonstrated improved selectivity, enhanced tumor retention, and superior
intracellular delivery, offering promising avenues for both chemotherapy and gene therapy
applications 2224, In breast cancer, nanoparticle albumin-bound paclitaxel (nab-paclitaxel) has
achieved better tumor penetration compared to conventional taxanes, while iRGD peptide-
functionalized nanoparticles have shown the ability to increase vascular permeability and
navigate dense tumor stroma, overcoming one of the major barriers to drug delivery in solid
breast tumors. For kidney cancers, particularly renal cell carcinoma, ligand-guided
nanoparticles have been developed to deliver cytotoxic agents specifically to tumor cells,
thereby minimizing exposure to healthy renal tissue and prolonging drug retention within the
tumor microenvironment 2?7, Brain cancer research has focused heavily on overcoming the
blood brain barrier, with breakthroughs including biomimetic nanoparticles coated with cell
membranes, dual-functional carriers capable of receptor-mediated transcytosis, and
magnetically guided systems, enabling direct delivery of chemotherapeutics, RNA-based
therapeutics, and gene-editing tools to brain tumors such as glioblastoma 25-3°,

Overall, these preclinical innovations mark a paradigm shift in cancer therapeutics,
demonstrating that nanomedicine can transcend the limitations of conventional treatments by
merging precise targeting, adaptive responsiveness, and multifunctionality 3!-32. This growing
body of evidence not only validates nanomedicine’s potential to address long-standing
challenges in oncology but also lays a robust foundation for its translation into effective,
patient-specific clinical applications. Preclinical advancements for liver, breast, kidney, and
brain cancers are summarized in Table 3, highlighting the targeting strategies, nanocarrier
types, and therapeutic outcomes reported across major studies *.

Table 3: Preclinical Nanomedicine Innovations by Cancer Type

T ting Strat &
Cancer Type argenns Ta c8y Model System Reference
Innovations
E - .
Liver GFR, folat‘e targeted Murine xe?nograft, cell 14
nanoconjugates lines
Breast nab-paclitaxel, 1RQD-med1ated Murine xeyograft, cell 35
penetration lines
Kidney/Renal Ligand-target'ed nanoparticles, Murine x§n0graft, cell 36
cell-specific payloads lines
. BBB-penetrating, dual-function | Murine orthotopic tumor,
Brain . 37
nanomaterials neural cell cultures
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Figure 3: Depicts the latest multistage nanoparticle designs, illustrating the sequential
mechanisms of organ-, tissue-, cell-, and organelle-specific targeting. The diagram also
highlights the dynamic responses of smart nanocarriers within cancer microenvironments,
including size, charge, and ligand exposure modulation to enhance tumor penetration and
therapeutic precision.

4. Clinical Translation and Recent Trial Evidence

Between 2019 and 2024, the clinical translation of nanomedicine from preclinical innovation
to patient-ready cancer therapies has advanced at an unprecedented pace, reflecting its growing
potential to reshape precision oncology *®. Moving from laboratory proof-of-concept to human
application requires rigorous evaluation of safety, efficacy, scalability, and manufacturability,
culminating in regulatory approval for routine clinical use. The overall developmental pathway
for a nanomedicine candidate, from preclinical validation through successive clinical phases to
regulatory approval, is illustrated in Figure 4 *>*°. The process typically begins with preclinical
evidence of superior tumor accumulation, cellular uptake, and subcellular targeting compared
to standard drugs. Only those candidates demonstrating clear advantages in efficacy and
tolerability progress to phase I human trials, which establish safety and determine optimal
dosing. Successful agents then advance to phase II studies for cancer-specific efficacy
validation, followed by phase III trials comparing performance against established treatment
standards in larger, more diverse patient populations 4142,

Several landmark trials in recent years have highlighted the therapeutic impact of
nanomedicine platforms. Liposomal doxorubicin (Doxil®) has been validated in multiple
phase I III trials for breast cancer, demonstrating reduced cardiotoxicity, improved

Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)
ISSN: 3107-6386 | Vol. 01, Issue 03, Sep-Dec. 2025 | pp. 71-99

78



\__4
Al
(é}' - JCPE Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)
‘ 0

0
Q
" e Jouralof ey and Pharmacuicl et ISSN: 3107-6386 | Vol. 01 H Issue 03’ Sep'D ec. 2025 ‘ pp. 71-99

pharmacokinetics, and enhanced tolerability over conventional doxorubicin. BIND-014, a
targeted polymeric nanoparticle carrying docetaxel, has shown clinical benefit across a range
of solid tumors by leveraging preferential tumor accumulation and minimizing systemic side
effects “***. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) has achieved
breakthrough clinical status, with approvals in breast, brain, and kidney cancers, driven by
improved solubility, lower hypersensitivity risk, and higher tumor response rates compared to
solvent-based taxanes +34°

The emergence of theranostic nanomedicine represents another pivotal achievement in clinical
translation. These multifunctional systems integrate diagnostic and therapeutic capabilities,
enabling real-time imaging of drug distribution and tumor response while simultaneously
delivering therapy *"*®. Examples include radiolabeled liposomes that pair PET imaging with
chemotherapy, and multifunctional nanoparticles that generate localized hyperthermia for
tumor ablation under imaging guidance. Such innovations not only enhance treatment precision
but also allow adaptive therapy strategies based on immediate feedback from the tumor
microenvironment *°-0,

Clinical experiences have also revealed critical lessons for advancing the field. Liposomal
doxorubicin demonstrated how nanomedicine can overcome systemic toxicity but also exposed
the limitations of relying solely on the enhanced permeability and retention effect, which varies
between patients and tumor types ®!. The translation of BIND-014 underscored the importance
of patient stratification and receptor profiling to maximize targeted delivery benefits. Nab-
paclitaxel’s widespread adoption highlighted the clinical and commercial value of biomimetic
nanocarriers that improve drug pharmacology without compromising safety. examples of
clinical nanomedicine trials and their translational features are summarized in Table 4 2,

Collectively, these trials confirm that nanomedicine is not a speculative technology but a viable
clinical reality, capable of enhancing therapeutic outcomes, reducing treatment-related toxicity,
and enabling entirely new paradigms of cancer management. The continuing integration of
precision targeting, patient-specific profiling, and theranostic functionality is expected to
accelerate nanomedicine’s role in routine oncology over the coming decade .

Table 4: Clinical Nanomedicine Trials and Translational Features

C Clinical
Nanomedicine aneer wica Outcome Reference
Type(s) Phase
Liposomal
I d safety, effi
doxorubicin Breast cancer [T rprovecsate y > © ‘1c‘acy, 64
. reduced cardiotoxicity
(Doxil®)
BIND-014 .
) Solid tumors Tumor-targeted response,
(polymeric docetaxel ) 111 . 65
NP) (varied) fewer side effects
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Figure 4: Typical development pipeline of a nanomedicine candidate, progressing from
preclinical validation and animal studies through successive clinical trial phases (I III) to
regulatory approval and clinical deployment. Representative imaging on the right illustrates
nanoparticle distribution patterns, highlighting preferential accumulation in tumors compared
to healthy organs.
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5. Cancer Type-Specific Advances

Recent advances in cancer nanomedicine have yielded significant breakthroughs across liver,
breast, kidney, and brain cancers, both in preclinical and clinical contexts. These developments
are visually summarized in Figure 5, which presents representative nanomedicine platforms for
each cancer type, highlighting their targeting strategies, drug release profiles, and tumor
penetration capabilities®®.

In liver cancer, targeted nanocarriers have been developed to exploit the liver’s distinct
vasculature and overexpressed receptors such as EGFR and folate receptors. These delivery
systems enhance selective accumulation in tumor tissue, improving therapeutic indices while
minimizing systemic toxicity **7°. Preclinical data demonstrate significantly increased drug
concentrations within tumors, while early-phase clinical trials report higher objective response
rates and reduced adverse effects compared to conventional systemic therapies. Encouraging
safety profiles and early signals of prolonged progression-free survival further support their
potential for integration into standard hepatocellular carcinoma management 772,

In breast cancer, nanomedicine has driven the development of advanced formulations such as
nanoparticle albumin-bound drugs and actively targeted nanoparticles functionalized with
antibodies or tumor-penetrating peptides. Multistage targeting strategies such as iRGD-
mediated tumor penetration have shown promise in overcoming the dense stromal barriers of
solid breast tumors and addressing metastatic disease ">7°. Clinical trial results, both completed
and ongoing, indicate improved survival outcomes and higher response rates in patients with
advanced or treatment-resistant breast cancer. These technologies allow higher drug payloads
to reach the tumor site with reduced systemic toxicity, aligning well with the move toward
personalized and precision oncology "*7°.

In kidney and renal cell carcinomas, research has increasingly focused on immune-modulatory
nanotherapies that not only deliver cytotoxic drugs but also reshape the tumor immune
microenvironment 38!, Ligand-directed and biomimetic nanoparticles tailored to renal tumor
markers have shown enhanced delivery efficiency and robust antitumor activity in both
preclinical studies and phase I II clinical settings. Early clinical translation demonstrates
durable responses in certain patient subsets, with preservation of renal function a critical
consideration in this cancer type 5284,

In brain cancer, one of the most significant milestones has been the effective delivery of
nanoparticles across the blood brain barrier (BBB), a challenge that has historically hindered
therapeutic progress in neuro-oncology %-%7. Engineered nanocarriers ranging from those
functionalized with BBB-targeting ligands to those cloaked in cell-derived membranes have
enabled the delivery of chemotherapeutics, RNA-based therapies, and gene-editing constructs
to both primary and metastatic brain tumors *%. Preclinical evidence points to marked
improvements in tumor regression and overall survival, while early-phase clinical trials
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confirm safety and signal therapeutic benefit. Advances in personalized nanocarrier design,
adapted to each patient’s tumor histology and molecular profile, are paving the way for a new
era of tailored neuro-oncology therapies ¥,

Collectively, these cancer type specific advances underscore nanomedicine’s capacity to
address the unique biological challenges of different tumor types, offering targeted, effective,
and increasingly personalized solutions that extend beyond the reach of conventional
treatments.

Examples of these organ-specific innovations, including the platforms used, their primary
targeting mechanisms, and therapeutic outcomes, are consolidated in Table 5, providing a
comparative overview of the most impactful nanomedicine breakthroughs reported in recent

years’! 2,
Table 5: Cancer Type-Specific Nanomedicine Breakthroughs
Cancer Type Breakthroughs & Innovations Clinical Outcomes Reference
Liver EGFR/folate targeting, locoregional High tumor response, less 93
nanoparticle delivery toxicity
Breast albumin-bound drugs, antibody/peptide Improved survival, high 94
targeting, iRGD penetration response rate
. . . . . Durabl , 1
Kidney/Renal | immune-related nanoparticles, ligand targeting Hrable requn 3¢, Tena 95-96
protection
. BBB-crossing NPs, membrane-conjugated Tumor regression,
Brain . . . 97
carriers personalized delivery

Liver Cancer
R
~ 4
=3
Drug release ncid-sensitive

Acid-sensitive

Breast Cancer

Tumor cell

Kidney Cancer

Brain Cancer

3
! ' {4 %:.rj\S

Tumor targer

{
— +%F

Dual-functional

Tumar celiring

Figure 5: Representative nanomedicine platforms tailored for liver, breast, kidney, and brain
cancers, illustrating their mechanisms of action. The figure highlights targeting strategies (e.g.,
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ligand-mediated recognition, biomimicry), drug release profiles (including pH- and enzyme-
responsive systems), and tumor penetration capabilities. Experimental model data and patient
imaging demonstrate nanoparticle distribution, selective accumulation in tumor tissues, and
minimal presence in healthy organs, underscoring their therapeutic precision and translational
potential.

6. Technology Platforms and Multistage Targeting

Technological advances have driven the emergence of sophisticated nanomedicine platforms
designed to overcome the multiple biological barriers that hinder effective cancer therapy *%.
Among these, multistage targeting systems stand out for their ability to dynamically adapt to
the tumor microenvironment (Figure 6).Such smart Nano systems are engineered to undergo
controlled modifications in size, surface charge, and ligand exposure at different stages of
delivery *°. For example, nanoparticles may initially circulate as large, near-neutral structures
to prolong systemic residency and maximize passive tumor accumulation. Once within the
tumor vicinity, they can shrink in size, shift to a positive surface charge, and expose previously
hidden targeting ligands steps that promote enhanced cellular uptake and even organelle-
specific localization. This adaptive behavior not only increases therapeutic precision but also
reduces off-target toxicity 9019,

Biomimetic carriers represent another breakthrough in this space. By cloaking nanoparticles
with cancer cell membranes, stem cell membranes, or red blood cell membranes, researchers
have created delivery systems that mimic endogenous surfaces '®. These camouflaged
platforms evade immune recognition, extend circulation time, and demonstrate superior
homing to tumor tissue, thereby facilitating deeper tissue penetration and improved therapeutic

index %,

Recent developments have also incorporated Al-driven nanoparticle design, where
computational modeling, machine learning, and large-scale data analysis are used to optimize
physicochemical parameters, drug release kinetics, and targeting ligand configurations '%. This
accelerates the discovery of candidate formulations with optimal safety efficacy profiles,
enabling the tailoring of nanomedicines to individual patient needs '%’.

Meanwhile, microfluidics technology has transformed nanoparticle synthesis by allowing
precise, reproducible control over particle size, shape, and surface chemistry '%. Microfluidic
platforms enable high-throughput screening and consistent batch production addressing a long-
standing challenge in the clinical translation of nanomedicine. Furthermore, these devices are
central to the development of organ-on-chip models, which faithfully replicate human tissue
architecture and tumor microenvironments ', By enabling real-time evaluation of
nanoparticle biodistribution, tumor penetration, and therapeutic performance under
physiologically relevant conditions, organ-on-chip systems bridge the gap between traditional
animal studies and human clinical trials !'1-112,
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Collectively, these technological platforms spanning adaptive targeting strategies, biomimetic
engineering, Al-guided design, and microfluidic manufacturing represent a converging frontier
in nanomedicine 1'%, The most prominent examples of these emerging platforms spanning
biomimetic design, Al-based optimization, and microfluidics-enabled fabrication are
summarized in Table 6, highlighting their mechanistic advantages, translational readiness, and
potential to deliver patient-specific cancer therapeutics. They not only enhance precision drug
delivery but also provide scalable, reproducible, and patient-specific solutions, moving the
field closer to routine clinical integration '!°,

Table 6: Emerging Technology Platforms for Multistage Nanomedicine Targeting

Role in Multistage
Technology Description & Benefits . g Reference
Targeting
Smart nano- Size/charge modification, Enhance accumulation, 116
systems ligand exposure penetration, specificity
Biomimetic Cell membrane camouflage Prolonged circulation, 17
carriers (cancer cell, stem cell, RBC) immune evasion
Al-driven Computational prediction of Rational nanoparticle 118
synthesis design and efficacy formulation
. . Precision nanoparticle Consistency, high-
Microfluidics . P Y g' 119
fabrication throughput screening
Organ-on-chip Human-like tissue/tumor Better prediction of 120
models architecture on chips clinical outcomes
Dynamic changes in
nanoparticle
physicochemical prop.
Biomimetic Integration of
pH carriers Al/microfluidics

Enzyme

g D Y % Multivtailcur

Figure 6: Principles and workflow of multistage targeting in nanomedicine. The schematic
illustrates dynamic changes in nanoparticle physicochemical properties (size, charge, ligand
exposure) in response to tumor microenvironmental cues, the engineering of biomimetic
carriers (e.g., cancer cell membrane-coated, red blood cell membrane-coated systems) for
immune evasion and targeted homing, and the integration of Al-driven design with
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microfluidic synthesis platforms. Together, these strategies enable the development of patient-
tailored cancer therapeutics with enhanced targeting specificity, controlled drug release, and
improved clinical translation potential.

7. Translational Barriers and Solutions

Despite remarkable progress in cancer nanomedicine, multiple translational barriers persist as
nanodrugs move from laboratory innovation to clinical reality. Biological challenges are
among the most formidable: patient-to-patient heterogeneity in tumor physiology, variable
expression of targeting receptors, diverse tumor microenvironments, and differences in
immune system responses all influence nanoparticle accumulation, cellular uptake, and
therapeutic efficacy '?!'?2. The enhanced permeability and retention (EPR) effect once a
cornerstone in nanomedicine targeting shows inconsistent outcomes due to these variabilities,
leading to unpredictable patient responses 123124,

Manufacturing obstacles include complex synthesis protocols, scale-up difficulties, and issues
with batch-to-batch consistency (Table 7). Reliable production of nanoparticles with tightly
controlled size, shape, surface characteristics, and drug loading is essential for reproducibility
and regulatory approval, yet remains technically challenging. Quality control processes must
adapt to the multicomponent and dynamic nature of nanomedicines 21?7,

Regulatory hurdles reflect the novelty of these platforms: agencies have limited precedents for
evaluating the safety, efficacy, and pharmacokinetics of nanoscale constructs, especially those
with multistage or stimuli-responsive properties 2513° Standardization of characterization
techniques, establishment of robust clinical endpoints, and creation of clear guidelines for
nanoparticle-based drugs are required to streamline the approval process and adoption into
medical practice 31132,

Several strategies are being employed to bridge the gap from bench to bedside:

o Patient stratification and companion diagnostics enable researchers to identify which
patients by virtue of their tumor biology may benefit most from a given nanomedicine.
Incorporating imaging and biomarker analyses into early-phase trials helps address
variability in response '*°.

o Integrated technology platforms such as Al-guided nanoparticle design, microfluidics
for scalable and reproducible synthesis, and organ-on-chip models for realistic
preclinical evaluation, improve reliability and clinical predictability '3,

e Adaptive clinical trial designs allow flexibility in modifying protocols in response to
emerging safety or efficacy data, expediting trial progression and regulatory review ¥,

e Collaborative consortia and regulatory advisory panels (drawn from academia,
industry, and governing bodies) help tackle technical challenges, define testing
standards, and pilot harmonized approval pathways %,
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e Manufacturing innovation for example, continuous-flow microfluidic reactors
addresses scalability and reproducibility, while advanced analytical methods ensure
product quality at every step 17,

Table 7: Translational Barriers and Bridging Strategies in Cancer Nanomedicine

Barrier Type Examples Solutions/Strategies Reference
Tumor
. ) het ity, EPR C ion di tics, patient
Biological e ‘ero‘g?nel'y ‘ Om[‘)aIllOI‘l iagnostics, patien ‘ 138
variability, immune | stratification, biomarker-based selection
effects

le- tch
Scale-up, batc Microfluidic production, Al-guided

Manufacturin consistency, QC ) ) 139
& y.Q synthesis, robust QC analytics
challenges
Limited precedents, | Advisory consortia, adaptive trial design,
Regulatory P Y . p . 8 140
unclear standards clear characterization metrics

8. Future Directions & Opportunities

Future directions in translational nanomedicine are rapidly converging on the development of
personalized nanomedicine customized therapeutic and diagnostic platforms tailored to
individual patient profiles, tumor genetics, and unique tumor microenvironments 'l
Leveraging patient-specific biomarkers, machine learning models, and quantitative imaging
analyses, next-generation diagnostics are now capable of stratifying patients for optimal
therapy selection and monitoring treatment response in real time. For example, machine
learning-based histopathological analyses and radiomic models from CT scans are already
being used to predict immunotherapy efficacy and identify candidates who will benefit most

from nanoparticle-mediated interventions >4,

The integration with immunotherapy represents a paradigm shift, as nanoparticles are
increasingly being used to deliver immunomodulatory agents, cytokines, and gene-editing tools
directly into the tumor microenvironment (Table 8). Combination strategies that unite
chemotherapeutics with immune checkpoint inhibitors, mRNA vaccines, and stimuli-
responsive carriers offer synergistic anti-tumor effects boosting immune activation,
reprogramming suppressive tumor-associated macrophages, and enhancing tumor infiltration
by T cells 1%, Cutting-edge examples include precision intelligent nanomissiles, which
remodel the tumor immune milieu, and CAR-T therapies paired with nanoparticle adjuvants to

overcome treatment resistance and tumor escape '“°.

Artificial intelligence (Al) is playing an essential role in accelerating the design, optimization,
and clinical translation of nanomedicines. Deep learning models predict nanoparticle
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biodistribution, toxicity, and efficacy, while assisting in high-throughput screening of
candidate formulations and the rational selection of targeting ligands and payloads '47. Al-
driven platforms are facilitating the move toward real-world evidence: clinical data integration
and outcome analytics are guiding the selection of best-in-class nanotherapeutics for specific
cancers and patient subgroups %,

A particularly exciting development is the potential for multi-cancer targeting platforms.
Multifunctional and biomimetic nanoparticle systems can be engineered with modular
targeting ligands to address several cancer types simultaneously leveraging common
overexpressed receptors, tumor antigens, or microenvironment features. These platforms may
radically streamline personalized oncology, providing a flexible toolkit for simultaneous
diagnosis, delivery, and real-time imaging across diverse tumors 4150,

Table 8: Future Trends in Nanomedicine for Cancer Therapy

Description &
Strategy P Clinical/Research Impact | Reference
Example
) Biomarker-driven .. .
Personalized V Individualized therapy,
. platforms, patient ) 151
nanomedicine improved outcomes
avatars
Al-integrated Machine learning, real- Rapid optimization, 152
design world analytics predictive efficacy
Immunothera Nano-delivery of Synergistic anti-tumor
. 24 immune modulators, yners 153
combination . response
vaccines
: . Streamlined
Multi-cancer Modular, multi-targeted . .
) diagnosis/treatment across 154
platforms carriers
cancers

9. Conclusion

The past five years have witnessed remarkable progress in the field of cancer nanomedicine,
with innovations spanning from intelligent, stimuli-responsive delivery systems to clinically
validated nanotherapeutics that are redefining standards of care. Preclinical studies have
demonstrated the power of multistage targeting, biomimetic carriers, and Al-assisted
nanoparticle design to address the inherent complexities of tumor biology, while microfluidic
manufacturing and organ-on-chip models have accelerated translation toward patient-ready
solutions.

Clinically, nanomedicine has moved beyond proof-of-concept, with multiple platformssuch as
liposomal doxorubicin, nab-paclitaxel, and targeted polymeric nanoparticlesproving their
ability to improve efficacy, reduce systemic toxicity, and in some cases, open entirely new
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therapeutic avenues through theranostic integration. Advances in crossing physiological
barriers, such as the blood brain barrier, and tailoring drug delivery to tumor-specific molecular
signatures have brought truly personalized oncology within reach.

However, challenges remain. Variability in the enhanced permeability and retention effect, the
complexity of large-scale manufacturing, and the need for robust patient stratification continue
to shape the trajectory of research and clinical implementation. Addressing these issues will
require an interdisciplinary approachmerging nanotechnology, molecular oncology,
computational design, and systems biologyto refine and optimize future therapeutics.

Ultimately, cancer nanomedicine is poised to evolve from a promising innovation into a
mainstream clinical reality. The convergence of precision targeting, adaptive delivery, real-
time monitoring, and scalable manufacturing will enable the creation of individualized
treatment regimens that not only extend survival but also improve quality of life for patients
across diverse cancer types. The momentum built between 2019 and 2024 suggests that the
next decade could see nanomedicine become a cornerstone of cancer therapy, transforming the
way we diagnose, monitor, and treat malignancies.
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