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Abstract: 

Background: 
Cancer continues to rank among the leading causes of global mortality, with liver, breast, kidney, and brain 
malignancies presenting some of the most complex therapeutic challenges. Conventional treatments such as 
chemotherapy, radiotherapy, and targeted agents are constrained by tumor heterogeneity, systemic toxicity, and 
the emergence of drug resistance.Aim: 
This systematic review evaluates advancements in nanomedicine between 2019 and 2024, focusing on 
translational innovations for liver, breast, kidney, and brain cancers. Special emphasis is placed on preclinical 
breakthroughs, clinical trial outcomes, and the integration of artificial intelligence (AI) and microfluidics in 
developing patient-specific therapeutic platforms. Methods: 
Following PRISMA guidelines, an extensive literature search was conducted across PubMed, Scopus, Web of 
Science, and ClinicalTrials.gov. Eligible studies included preclinical models, phase I–III clinical trials, and 
translational research on nanomedicine-based interventions for the selected cancers. Data were extracted on 
nanocarrier type, targeting strategy, and mechanism of action, efficacy, safety, and translational readiness. AI-
driven design approaches and microfluidics-enabled synthesis platforms were also analyzed for their role in 
accelerating optimization and personalization. Result:Preclinical studies demonstrated the efficacy of multistage 
targeting nanocarriers incorporating passive, active, and hierarchical mechanisms, as well as stimuli-responsive 
systems triggered by tumor microenvironmental cues (pH, enzymatic activity, and hypoxia). Biomimetic 
nanoparticles, including cell membrane-coated carriers, showed enhanced immune evasion and tumor homing. 
Clinically validated examples such as liposomal doxorubicin, nanoparticle albumin-bound paclitaxel, and 
receptor-targeted polymeric nanoparticles reported improved tumor response rates, reduced off-target toxicity, and 
favorable safety profiles. Theranostic platforms integrating imaging and therapy enabled real-time monitoring and 
adaptive treatment strategies. AI algorithms facilitated predictive modeling of nanoparticle–tumor interactions, 
optimization of ligand density, and payload release kinetics, while microfluidics ensured scalable, reproducible 
manufacturing and organ-on-chip-based preclinical validation.Conclusion:Nanomedicine has transitioned from 
experimental proof-of-concept to a viable clinical reality in oncology, offering unprecedented precision, 
adaptability, and multifunctionality. The integration of AI-driven design and microfluidic fabrication is 
accelerating the translation of nanocarriers into patient-specific therapies, with the potential to overcome long-
standing barriers in drug delivery. These advances mark a paradigm shift toward data-driven, personalized 
nanomedicine, positioning it as a cornerstone of next-generation cancer care. 

Keywords: Nanomedicine, Cancer therapy, Liver cancer, Breast cancer, Kidney cancer, Brain cancer, Multistage 
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__________________________________ 
1. Introduction

Cancer continues to be one of the most formidable health challenges of the modern era, 
claiming millions of lives each year and imposing a heavy physical, emotional, and economic 
toll on patients, families, and healthcare systems. While traditional approaches such as 
chemotherapy, radiotherapy, surgery, and targeted drugs have significantly improved patient 
outcomes over the past decades, they are far from perfect 1. Limitations including tumor 
heterogeneity, low drug selectivity, systemic toxicity, and the emergence of multidrug 
resistance often lead to incomplete responses and high relapse rates 2. 

These challenges are particularly acute when treating tumors located in hard-to-reach or 
biologically protected sites, such as brain cancers shielded by the blood brain barrier, liver 
cancers subjected to rapid drug metabolism, and kidney tumors with unique 
microenvironmental barriers.3 Aggressive breast cancers, prone to early metastasis and 
frequent recurrence, further underscore the urgent need for next-generation therapeutics 
capable of breaking through these biological defences 4. 

In this context, nanomedicine has emerged as a disruptive force in oncology, offering the 
promise of targeted, multifunctional, and adaptive therapeutic strategies 5. By leveraging 
nanoscale engineering, drug-loaded nanoparticles, smart nanocarriers, and biomimetic delivery 
systems can navigate complex physiological barriers, concentrate therapeutics at tumor sites, 
and reduce collateral damage to healthy tissues 6. This precision-oriented approach not only 
enhances treatment efficacy but also opens the door to integrating therapeutic and diagnostic 
(theranostic) functions within a single platform 7. 

Over the past five years, research in translational nanomedicine has accelerated, with numerous 
innovations advancing from bench to bedside 8. Despite numerous advancements in 
conventional therapies such as chemotherapy, radiotherapy, and targeted drugs, these 
modalities face considerable limitations. Tumor heterogeneity, poor drug selectivity, systemic 
toxicity, and the challenge of drug resistance are significant barriers that hinder lasting curative 

72

https://doi.org/10.64474/3107-6386.Vol1.Issue3.5
https://ijcps.nknpub.com/1/issue/archive


                    Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)          
ISSN: 3107-6386 | Vol. 01, Issue 03, Sep-Dec. 2025 | pp. 71-99 

 
 

                                           
Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)  

ISSN: 3107-6386 | Vol. 01, Issue 03, Sep-Dec. 2025 | pp. 71-99 
 

 

outcomes. For instance, conventional drugs often show limited effectiveness in targeting deep-
seated tumors or metastatic lesions particularly in challenging organs like the brain, liver, and 
kidneys as well as in aggressive breast cancers, where recurrence is frequent. The limitations 
for each of these cancer types are summarized in Table 1, while Figure 1 illustrates the major 
physiological barriers and challenges associated with conventional treatments, highlighting the 
rationale for nanomedicine-based interventions. These cancer types have become focal points 
for nanomedicine innovation due to their biological complexity, high mortality rates, and 
unmet clinical needs 9. 

The purpose of this systematic review is to critically evaluate developments in translational 
nanomedicine for these cancers between 2019 and 2024. This includes a detailed examination 
of preclinical breakthroughs, underlying mechanisms of action, and the translation of 
experimental findings into clinical applications 10. Special attention is given to assessing 
therapeutic efficacy, safety profiles, and real-world feasibility, with the ultimate goal of 
identifying promising strategies that could redefine cancer treatment and improve long-term 
patient outcomes 11. 

Table 1: Limitations of Conventional Cancer Therapies across Selected Organs 

Cancer 
Type 

Conventional Therapy 
Limitations Special Challenges Reference 

Liver Drug metabolism & resistance Tumor heterogeneity 12 

Breast Recurrence, metastasis, limited 
selectivity 

Hormonal influence, dense 
stroma 

13 

Kidney Poor penetration, toxicity Hypoxia, renal clearance 14 

Brain Blood-brain barrier, neurotoxicity Drug delivery, protective 
barriers 15 
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Figure 1: illustrates the physiological barriers and challenges encountered by conventional 
therapies in each selected organ liver, breast, kidney, and brain and highlights the rationale for 
Nano medicine-based interventions. 

2. Methodology 

The methodology of this systematic review was designed to ensure rigorous and transparent 
synthesis of current evidence in translational nanomedicine for cancer therapy, focusing on 
liver, breast, kidney, and brain cancers from 2019 to 2024. The review protocol followed 
PRISMA guidelines, enabling reproducibility and minimizing bias during the selection and 
appraisal of studies. 

A comprehensive literature search was performed across multiple scientific databases, 
including PubMed, Scopus, Web of Science, and ClinicalTrials.gov. The search strategy 
incorporated relevant keywords such as Nano medicine,   nanoparticle,   cancer therapy,   
clinical trial,   liver cancer,   breast cancer,   kidney cancer,   brain cancer, and 2019 2024.  Only 
studies published in English within the defined timeframe were considered. Additional articles 
were identified by screening the references of included papers to capture important 
developments. 

The study selection process involved a two-step review: initial screening of titles and abstracts 
for relevance, followed by full-text evaluation against predefined inclusion and exclusion 
criteria (Table 2). Eligible studies comprised preclinical research (including in vitro and animal 
models), clinical trials (phases I III), and translational investigations that addressed 
nanomedicine-based interventions in the selected cancers. Exclusion criteria included 
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conference abstracts, reviews, non-original data, and studies outside the target timeframe or 
cancer types. The overall process of identification, screening, eligibility assessment, and 
inclusion is summarized in Figure 2. 

Data extraction was performed using standardized forms, collecting information on publication 
year, cancer type, nanomedicine platform, study design, primary outcomes (e.g., efficacy, 
safety, survival metrics), and notable translational hurdles encountered. The quality and risk of 
bias for clinical studies were assessed with the Cochrane Risk of Bias tool, while preclinical 
studies were appraised with the SYRCLE risk-of-bias criteria. Discrepancies during extraction 
and assessment were resolved by consensus between reviewers to uphold methodological 
integrity. 

The scope of this review encompassed the translational journey from preclinical innovation to 
human clinical trials, with special emphasis on challenges in moving from laboratory findings 
to practical therapeutic applications. Results were synthesized both qualitatively and, where 
datasets allowed, quantitatively to reflect mechanistic insights, clinical outcomes, and 
strategies for overcoming translational barriers. 

Table 2: Systematic Review Inclusion and Exclusion Criteria 

Criteria Inclusion Exclusion 

Timeframe 2019 2024 Before 2019, after 2024 

Language English Non-English 

Cancer Types Liver, breast, kidney, brain Other cancers 

Study 
Designs 

Preclinical (in vitro/in vivo), 
clinical 

Reviews, conference abstracts, 
editorials 

Intervention Nanomedicine-based therapies Non-nanomedicine therapies 

Data Type Original research, clinical outcomes Non-original data 
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Figure 2. PRISMA 2020 flow diagram of study selection for the systematic review. The 
diagram outlines the identification, screening, eligibility assessment, and inclusion of studies 
from 2019 to 2024, highlighting the number of records retrieved from databases, removed as 

duplicates, excluded after screening, and finally included in the review. 

3. Preclinical Innovations in Nanomedicine 

Recent advances in nanomedicine have significantly transformed the preclinical approach to 
cancer therapy, introducing highly engineered nanoparticles capable of precise drug delivery 
at the organ, tissue, cellular, and even organelle level. 16 These next-generation nanocarriers 
are designed to combine multiple targeting strategies, including passive targeting via the 
enhanced permeability and retention effect, active targeting through receptor-specific ligands 
or antibodies, and hierarchical multistage targeting that sequentially directs the therapeutic 
payload from tissue to cell to subcellular compartments 17-18. Stimuli-responsive nanocarriers 
further enhance treatment precision by altering their size, surface charge, hydrophobicity, or 
ligand presentation in response to tumor-specific physiological cues such as acidic pH, high 
glutathione levels, hypoxia, or enzymatic activity. This adaptive behavior improves penetration 
into dense tumor tissues, facilitates efficient cellular uptake, and enables site-specific drug 
release while reducing systemic toxicity 20-21 (Figure 3). 
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Preclinical evaluation of these platforms employs a combination of in vitro cancer cell lines, 
orthotopic tumor models, and patient-derived xenografts to assess biodistribution, tumor 
accumulation, uptake mechanisms, and therapeutic performance. In liver cancer, ligand-
functionalized nanoconjugates targeting overexpressed receptors such as EGFR and folate 
receptors have demonstrated improved selectivity, enhanced tumor retention, and superior 
intracellular delivery, offering promising avenues for both chemotherapy and gene therapy 
applications 22-24. In breast cancer, nanoparticle albumin-bound paclitaxel (nab-paclitaxel) has 
achieved better tumor penetration compared to conventional taxanes, while iRGD peptide-
functionalized nanoparticles have shown the ability to increase vascular permeability and 
navigate dense tumor stroma, overcoming one of the major barriers to drug delivery in solid 
breast tumors. For kidney cancers, particularly renal cell carcinoma, ligand-guided 
nanoparticles have been developed to deliver cytotoxic agents specifically to tumor cells, 
thereby minimizing exposure to healthy renal tissue and prolonging drug retention within the 
tumor microenvironment 25-27. Brain cancer research has focused heavily on overcoming the 
blood brain barrier, with breakthroughs including biomimetic nanoparticles coated with cell 
membranes, dual-functional carriers capable of receptor-mediated transcytosis, and 
magnetically guided systems, enabling direct delivery of chemotherapeutics, RNA-based 
therapeutics, and gene-editing tools to brain tumors such as glioblastoma 28-30. 

Overall, these preclinical innovations mark a paradigm shift in cancer therapeutics, 
demonstrating that nanomedicine can transcend the limitations of conventional treatments by 
merging precise targeting, adaptive responsiveness, and multifunctionality 31-32. This growing 
body of evidence not only validates nanomedicine’s potential to address long-standing 
challenges in oncology but also lays a robust foundation for its translation into effective, 
patient-specific clinical applications. Preclinical advancements for liver, breast, kidney, and 
brain cancers are summarized in Table 3, highlighting the targeting strategies, nanocarrier 
types, and therapeutic outcomes reported across major studies 33. 

Table 3: Preclinical Nanomedicine Innovations by Cancer Type 

Cancer Type 
Targeting Strategy & 

Innovations Model System Reference 

Liver EGFR, folate-targeted 
nanoconjugates 

Murine xenograft, cell 
lines 34 

Breast nab-paclitaxel, iRGD-mediated 
penetration 

Murine xenograft, cell 
lines 35 

Kidney/Renal 
Ligand-targeted nanoparticles, 

cell-specific payloads 
Murine xenograft, cell 

lines 36 

Brain BBB-penetrating, dual-function 
nanomaterials 

Murine orthotopic tumor, 
neural cell cultures 37 
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Figure 3: Depicts the latest multistage nanoparticle designs, illustrating the sequential 
mechanisms of organ-, tissue-, cell-, and organelle-specific targeting. The diagram also 
highlights the dynamic responses of smart nanocarriers within cancer microenvironments, 
including size, charge, and ligand exposure modulation to enhance tumor penetration and 
therapeutic precision. 

4. Clinical Translation and Recent Trial Evidence  

Between 2019 and 2024, the clinical translation of nanomedicine from preclinical innovation 
to patient-ready cancer therapies has advanced at an unprecedented pace, reflecting its growing 
potential to reshape precision oncology 38. Moving from laboratory proof-of-concept to human 
application requires rigorous evaluation of safety, efficacy, scalability, and manufacturability, 
culminating in regulatory approval for routine clinical use. The overall developmental pathway 
for a nanomedicine candidate, from preclinical validation through successive clinical phases to 
regulatory approval, is illustrated in Figure 4 39-40. The process typically begins with preclinical 
evidence of superior tumor accumulation, cellular uptake, and subcellular targeting compared 
to standard drugs. Only those candidates demonstrating clear advantages in efficacy and 
tolerability progress to phase I human trials, which establish safety and determine optimal 
dosing. Successful agents then advance to phase II studies for cancer-specific efficacy 
validation, followed by phase III trials comparing performance against established treatment 
standards in larger, more diverse patient populations 41-42. 

Several landmark trials in recent years have highlighted the therapeutic impact of 
nanomedicine platforms. Liposomal doxorubicin (Doxil®) has been validated in multiple 
phase I III trials for breast cancer, demonstrating reduced cardiotoxicity, improved 
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pharmacokinetics, and enhanced tolerability over conventional doxorubicin. BIND-014, a 
targeted polymeric nanoparticle carrying docetaxel, has shown clinical benefit across a range 
of solid tumors by leveraging preferential tumor accumulation and minimizing systemic side 
effects 43-44. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) has achieved 
breakthrough clinical status, with approvals in breast, brain, and kidney cancers, driven by 
improved solubility, lower hypersensitivity risk, and higher tumor response rates compared to 
solvent-based taxanes 45-46. 

The emergence of theranostic nanomedicine represents another pivotal achievement in clinical 
translation. These multifunctional systems integrate diagnostic and therapeutic capabilities, 
enabling real-time imaging of drug distribution and tumor response while simultaneously 
delivering therapy 47-48. Examples include radiolabeled liposomes that pair PET imaging with 
chemotherapy, and multifunctional nanoparticles that generate localized hyperthermia for 
tumor ablation under imaging guidance. Such innovations not only enhance treatment precision 
but also allow adaptive therapy strategies based on immediate feedback from the tumor 
microenvironment 49-50. 

Clinical experiences have also revealed critical lessons for advancing the field. Liposomal 
doxorubicin demonstrated how nanomedicine can overcome systemic toxicity but also exposed 
the limitations of relying solely on the enhanced permeability and retention effect, which varies 
between patients and tumor types 61. The translation of BIND-014 underscored the importance 
of patient stratification and receptor profiling to maximize targeted delivery benefits. Nab-
paclitaxel’s widespread adoption highlighted the clinical and commercial value of biomimetic 
nanocarriers that improve drug pharmacology without compromising safety. examples of 
clinical nanomedicine trials and their translational features are summarized in Table 4 62. 

Collectively, these trials confirm that nanomedicine is not a speculative technology but a viable 
clinical reality, capable of enhancing therapeutic outcomes, reducing treatment-related toxicity, 
and enabling entirely new paradigms of cancer management. The continuing integration of 
precision targeting, patient-specific profiling, and theranostic functionality is expected to 
accelerate nanomedicine’s role in routine oncology over the coming decade 63. 

Table 4: Clinical Nanomedicine Trials and Translational Features 

Nanomedicine Cancer 
Type(s) 

Clinical 
Phase 

Outcome Reference 

Liposomal 
doxorubicin 

(Doxil®) 
Breast cancer I III Improved safety, efficacy, 

reduced cardiotoxicity 64 

BIND-014 
(polymeric docetaxel 

NP) 

Solid tumors 
(varied) I II 

Tumor-targeted response, 
fewer side effects 65 
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Nab-paclitaxel 
(albumin-bound 

paclitaxel) 

Breast, brain, 
kidney 
cancers 

II III Better solubility/response, 
lower hypersensitivity 66 

Theranostic 
nanoparticles 

Multiple 
(imaging + 

therapy) 
I II 

Real-time tracking, 
adaptive therapy 

strategies 
67 

 

 

Figure 4: Typical development pipeline of a nanomedicine candidate, progressing from 
preclinical validation and animal studies through successive clinical trial phases (I III) to 
regulatory approval and clinical deployment. Representative imaging on the right illustrates 
nanoparticle distribution patterns, highlighting preferential accumulation in tumors compared 
to healthy organs. 

80



                    Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)          
ISSN: 3107-6386 | Vol. 01, Issue 03, Sep-Dec. 2025 | pp. 71-99 

 
 

                                           
Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)  

ISSN: 3107-6386 | Vol. 01, Issue 03, Sep-Dec. 2025 | pp. 71-99 
 

 

5. Cancer Type-Specific Advances 

Recent advances in cancer nanomedicine have yielded significant breakthroughs across liver, 
breast, kidney, and brain cancers, both in preclinical and clinical contexts. These developments 
are visually summarized in Figure 5, which presents representative nanomedicine platforms for 
each cancer type, highlighting their targeting strategies, drug release profiles, and tumor 
penetration capabilities68. 

In liver cancer, targeted nanocarriers have been developed to exploit the liver’s distinct 
vasculature and overexpressed receptors such as EGFR and folate receptors. These delivery 
systems enhance selective accumulation in tumor tissue, improving therapeutic indices while 
minimizing systemic toxicity 69-70. Preclinical data demonstrate significantly increased drug 
concentrations within tumors, while early-phase clinical trials report higher objective response 
rates and reduced adverse effects compared to conventional systemic therapies. Encouraging 
safety profiles and early signals of prolonged progression-free survival further support their 
potential for integration into standard hepatocellular carcinoma management 71-72. 

In breast cancer, nanomedicine has driven the development of advanced formulations such as 
nanoparticle albumin-bound drugs and actively targeted nanoparticles functionalized with 
antibodies or tumor-penetrating peptides. Multistage targeting strategies such as iRGD-
mediated tumor penetration have shown promise in overcoming the dense stromal barriers of 
solid breast tumors and addressing metastatic disease 73-75. Clinical trial results, both completed 
and ongoing, indicate improved survival outcomes and higher response rates in patients with 
advanced or treatment-resistant breast cancer. These technologies allow higher drug payloads 
to reach the tumor site with reduced systemic toxicity, aligning well with the move toward 
personalized and precision oncology 76-79. 

In kidney and renal cell carcinomas, research has increasingly focused on immune-modulatory 
nanotherapies that not only deliver cytotoxic drugs but also reshape the tumor immune 
microenvironment 80-81. Ligand-directed and biomimetic nanoparticles tailored to renal tumor 
markers have shown enhanced delivery efficiency and robust antitumor activity in both 
preclinical studies and phase I II clinical settings. Early clinical translation demonstrates 
durable responses in certain patient subsets, with preservation of renal function a critical 
consideration in this cancer type 82-84. 

In brain cancer, one of the most significant milestones has been the effective delivery of 
nanoparticles across the blood brain barrier (BBB), a challenge that has historically hindered 
therapeutic progress in neuro-oncology 85-87. Engineered nanocarriers ranging from those 
functionalized with BBB-targeting ligands to those cloaked in cell-derived membranes have 
enabled the delivery of chemotherapeutics, RNA-based therapies, and gene-editing constructs 
to both primary and metastatic brain tumors 88. Preclinical evidence points to marked 
improvements in tumor regression and overall survival, while early-phase clinical trials 

81



                    Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)          
ISSN: 3107-6386 | Vol. 01, Issue 03, Sep-Dec. 2025 | pp. 71-99 

 
 

                                           
Interconnected Journal of Chemistry and Pharmaceutical Sciences (IJCPS)  

ISSN: 3107-6386 | Vol. 01, Issue 03, Sep-Dec. 2025 | pp. 71-99 
 

 

confirm safety and signal therapeutic benefit. Advances in personalized nanocarrier design, 
adapted to each patient’s tumor histology and molecular profile, are paving the way for a new 
era of tailored neuro-oncology therapies 89-90. 

Collectively, these cancer type specific advances underscore nanomedicine’s capacity to 
address the unique biological challenges of different tumor types, offering targeted, effective, 
and increasingly personalized solutions that extend beyond the reach of conventional 
treatments. 

Examples of these organ-specific innovations, including the platforms used, their primary 
targeting mechanisms, and therapeutic outcomes, are consolidated in Table 5, providing a 
comparative overview of the most impactful nanomedicine breakthroughs reported in recent 
years91-92. 

Table 5: Cancer Type-Specific Nanomedicine Breakthroughs 

Cancer Type Breakthroughs & Innovations Clinical Outcomes Reference 

Liver 
EGFR/folate targeting, locoregional 

nanoparticle delivery 
High tumor response, less 

toxicity 93 

Breast 
albumin-bound drugs, antibody/peptide 

targeting, iRGD penetration 
Improved survival, high 

response rate 94 

Kidney/Renal immune-related nanoparticles, ligand targeting Durable response, renal 
protection 95-96 

Brain BBB-crossing NPs, membrane-conjugated 
carriers 

Tumor regression, 
personalized delivery 97 

 

Figure 5: Representative nanomedicine platforms tailored for liver, breast, kidney, and brain 
cancers, illustrating their mechanisms of action. The figure highlights targeting strategies (e.g., 
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ligand-mediated recognition, biomimicry), drug release profiles (including pH- and enzyme-
responsive systems), and tumor penetration capabilities. Experimental model data and patient 
imaging demonstrate nanoparticle distribution, selective accumulation in tumor tissues, and 
minimal presence in healthy organs, underscoring their therapeutic precision and translational 
potential. 

6. Technology Platforms and Multistage Targeting 

Technological advances have driven the emergence of sophisticated nanomedicine platforms 
designed to overcome the multiple biological barriers that hinder effective cancer therapy 98. 
Among these, multistage targeting systems stand out for their ability to dynamically adapt to 
the tumor microenvironment (Figure 6).Such smart Nano systems are engineered to undergo 
controlled modifications in size, surface charge, and ligand exposure at different stages of 
delivery 99. For example, nanoparticles may initially circulate as large, near-neutral structures 
to prolong systemic residency and maximize passive tumor accumulation. Once within the 
tumor vicinity, they can shrink in size, shift to a positive surface charge, and expose previously 
hidden targeting ligands steps that promote enhanced cellular uptake and even organelle-
specific localization. This adaptive behavior not only increases therapeutic precision but also 
reduces off-target toxicity 100-103. 

Biomimetic carriers represent another breakthrough in this space. By cloaking nanoparticles 
with cancer cell membranes, stem cell membranes, or red blood cell membranes, researchers 
have created delivery systems that mimic endogenous surfaces 104. These camouflaged 
platforms evade immune recognition, extend circulation time, and demonstrate superior 
homing to tumor tissue, thereby facilitating deeper tissue penetration and improved therapeutic 
index 105. 

Recent developments have also incorporated AI-driven nanoparticle design, where 
computational modeling, machine learning, and large-scale data analysis are used to optimize 
physicochemical parameters, drug release kinetics, and targeting ligand configurations 106. This 
accelerates the discovery of candidate formulations with optimal safety efficacy profiles, 
enabling the tailoring of nanomedicines to individual patient needs 107. 

Meanwhile, microfluidics technology has transformed nanoparticle synthesis by allowing 
precise, reproducible control over particle size, shape, and surface chemistry 108. Microfluidic 
platforms enable high-throughput screening and consistent batch production addressing a long-
standing challenge in the clinical translation of nanomedicine. Furthermore, these devices are 
central to the development of organ-on-chip models, which faithfully replicate human tissue 
architecture and tumor microenvironments 109-110. By enabling real-time evaluation of 
nanoparticle biodistribution, tumor penetration, and therapeutic performance under 
physiologically relevant conditions, organ-on-chip systems bridge the gap between traditional 
animal studies and human clinical trials 111-112. 
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Collectively, these technological platforms spanning adaptive targeting strategies, biomimetic 
engineering, AI-guided design, and microfluidic manufacturing represent a converging frontier 
in nanomedicine 113-114. The most prominent examples of these emerging platforms spanning 
biomimetic design, AI-based optimization, and microfluidics-enabled fabrication are 
summarized in Table 6, highlighting their mechanistic advantages, translational readiness, and 
potential to deliver patient-specific cancer therapeutics. They not only enhance precision drug 
delivery but also provide scalable, reproducible, and patient-specific solutions, moving the 
field closer to routine clinical integration 115. 

Table 6: Emerging Technology Platforms for Multistage Nanomedicine Targeting 

Technology Description & Benefits 
Role in Multistage 

Targeting Reference 

Smart nano-
systems 

Size/charge modification, 
ligand exposure 

Enhance accumulation, 
penetration, specificity 116 

Biomimetic 
carriers 

Cell membrane camouflage 
(cancer cell, stem cell, RBC) 

Prolonged circulation, 
immune evasion 

117 

AI-driven 
synthesis 

Computational prediction of 
design and efficacy 

Rational nanoparticle 
formulation 118 

Microfluidics Precision nanoparticle 
fabrication 

Consistency, high-
throughput screening 119 

Organ-on-chip 
models 

Human-like tissue/tumor 
architecture on chips 

Better prediction of 
clinical outcomes 120 

 

Figure 6: Principles and workflow of multistage targeting in nanomedicine. The schematic 
illustrates dynamic changes in nanoparticle physicochemical properties (size, charge, ligand 
exposure) in response to tumor microenvironmental cues, the engineering of biomimetic 
carriers (e.g., cancer cell membrane-coated, red blood cell membrane-coated systems) for 
immune evasion and targeted homing, and the integration of AI-driven design with 
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microfluidic synthesis platforms. Together, these strategies enable the development of patient-
tailored cancer therapeutics with enhanced targeting specificity, controlled drug release, and 
improved clinical translation potential. 

7. Translational Barriers and Solutions 

Despite remarkable progress in cancer nanomedicine, multiple translational barriers persist as 
nanodrugs move from laboratory innovation to clinical reality. Biological challenges are 
among the most formidable: patient-to-patient heterogeneity in tumor physiology, variable 
expression of targeting receptors, diverse tumor microenvironments, and differences in 
immune system responses all influence nanoparticle accumulation, cellular uptake, and 
therapeutic efficacy 121-122. The enhanced permeability and retention (EPR) effect once a 
cornerstone in nanomedicine targeting shows inconsistent outcomes due to these variabilities, 
leading to unpredictable patient responses 123-124. 

Manufacturing obstacles include complex synthesis protocols, scale-up difficulties, and issues 
with batch-to-batch consistency (Table 7). Reliable production of nanoparticles with tightly 
controlled size, shape, surface characteristics, and drug loading is essential for reproducibility 
and regulatory approval, yet remains technically challenging. Quality control processes must 
adapt to the multicomponent and dynamic nature of nanomedicines 125-127. 

Regulatory hurdles reflect the novelty of these platforms: agencies have limited precedents for 
evaluating the safety, efficacy, and pharmacokinetics of nanoscale constructs, especially those 
with multistage or stimuli-responsive properties 128-130. Standardization of characterization 
techniques, establishment of robust clinical endpoints, and creation of clear guidelines for 
nanoparticle-based drugs are required to streamline the approval process and adoption into 
medical practice 131-132. 

Several strategies are being employed to bridge the gap from bench to bedside: 

• Patient stratification and companion diagnostics enable researchers to identify which 
patients by virtue of their tumor biology may benefit most from a given nanomedicine. 
Incorporating imaging and biomarker analyses into early-phase trials helps address 
variability in response 133. 

• Integrated technology platforms such as AI-guided nanoparticle design, microfluidics 
for scalable and reproducible synthesis, and organ-on-chip models for realistic 
preclinical evaluation, improve reliability and clinical predictability 134. 

• Adaptive clinical trial designs allow flexibility in modifying protocols in response to 
emerging safety or efficacy data, expediting trial progression and regulatory review 135. 

• Collaborative consortia and regulatory advisory panels (drawn from academia, 
industry, and governing bodies) help tackle technical challenges, define testing 
standards, and pilot harmonized approval pathways 136. 
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• Manufacturing innovation for example, continuous-flow microfluidic reactors 
addresses scalability and reproducibility, while advanced analytical methods ensure 
product quality at every step 137. 

Table 7: Translational Barriers and Bridging Strategies in Cancer Nanomedicine 

Barrier Type Examples Solutions/Strategies Reference 

Biological 

Tumor 
heterogeneity, EPR 
variability, immune 

effects 

Companion diagnostics, patient 
stratification, biomarker-based selection 138 

Manufacturing 
Scale-up, batch 
consistency, QC 

challenges 

Microfluidic production, AI-guided 
synthesis, robust QC analytics 139 

Regulatory Limited precedents, 
unclear standards 

Advisory consortia, adaptive trial design, 
clear characterization metrics 140 

 

8. Future Directions & Opportunities 

Future directions in translational nanomedicine are rapidly converging on the development of 
personalized nanomedicine customized therapeutic and diagnostic platforms tailored to 
individual patient profiles, tumor genetics, and unique tumor microenvironments 141. 
Leveraging patient-specific biomarkers, machine learning models, and quantitative imaging 
analyses, next-generation diagnostics are now capable of stratifying patients for optimal 
therapy selection and monitoring treatment response in real time. For example, machine 
learning-based histopathological analyses and radiomic models from CT scans are already 
being used to predict immunotherapy efficacy and identify candidates who will benefit most 
from nanoparticle-mediated interventions 142-143. 

The integration with immunotherapy represents a paradigm shift, as nanoparticles are 
increasingly being used to deliver immunomodulatory agents, cytokines, and gene-editing tools 
directly into the tumor microenvironment (Table 8). Combination strategies that unite 
chemotherapeutics with immune checkpoint inhibitors, mRNA vaccines, and stimuli-
responsive carriers offer synergistic anti-tumor effects boosting immune activation, 
reprogramming suppressive tumor-associated macrophages, and enhancing tumor infiltration 
by T cells 144-145. Cutting-edge examples include precision intelligent nanomissiles, which 
remodel the tumor immune milieu, and CAR-T therapies paired with nanoparticle adjuvants to 
overcome treatment resistance and tumor escape 146. 

Artificial intelligence (AI) is playing an essential role in accelerating the design, optimization, 
and clinical translation of nanomedicines. Deep learning models predict nanoparticle 
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biodistribution, toxicity, and efficacy, while assisting in high-throughput screening of 
candidate formulations and the rational selection of targeting ligands and payloads 147. AI-
driven platforms are facilitating the move toward real-world evidence: clinical data integration 
and outcome analytics are guiding the selection of best-in-class nanotherapeutics for specific 
cancers and patient subgroups 148. 

A particularly exciting development is the potential for multi-cancer targeting platforms. 
Multifunctional and biomimetic nanoparticle systems can be engineered with modular 
targeting ligands to address several cancer types simultaneously leveraging common 
overexpressed receptors, tumor antigens, or microenvironment features. These platforms may 
radically streamline personalized oncology, providing a flexible toolkit for simultaneous 
diagnosis, delivery, and real-time imaging across diverse tumors 149-150. 

Table 8: Future Trends in Nanomedicine for Cancer Therapy 

Strategy 
Description & 

Example Clinical/Research Impact Reference 

Personalized 
nanomedicine 

Biomarker-driven 
platforms, patient 

avatars 

Individualized therapy, 
improved outcomes 151 

AI-integrated 
design 

Machine learning, real-
world analytics 

Rapid optimization, 
predictive efficacy 152 

Immunotherapy 
combination 

Nano-delivery of 
immune modulators, 

vaccines 

Synergistic anti-tumor 
response 153 

Multi-cancer 
platforms 

Modular, multi-targeted 
carriers 

Streamlined 
diagnosis/treatment across 

cancers 
154 

9. Conclusion 

The past five years have witnessed remarkable progress in the field of cancer nanomedicine, 
with innovations spanning from intelligent, stimuli-responsive delivery systems to clinically 
validated nanotherapeutics that are redefining standards of care. Preclinical studies have 
demonstrated the power of multistage targeting, biomimetic carriers, and AI-assisted 
nanoparticle design to address the inherent complexities of tumor biology, while microfluidic 
manufacturing and organ-on-chip models have accelerated translation toward patient-ready 
solutions. 

Clinically, nanomedicine has moved beyond proof-of-concept, with multiple platformssuch as 
liposomal doxorubicin, nab-paclitaxel, and targeted polymeric nanoparticlesproving their 
ability to improve efficacy, reduce systemic toxicity, and in some cases, open entirely new 
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therapeutic avenues through theranostic integration. Advances in crossing physiological 
barriers, such as the blood brain barrier, and tailoring drug delivery to tumor-specific molecular 
signatures have brought truly personalized oncology within reach. 

However, challenges remain. Variability in the enhanced permeability and retention effect, the 
complexity of large-scale manufacturing, and the need for robust patient stratification continue 
to shape the trajectory of research and clinical implementation. Addressing these issues will 
require an interdisciplinary approachmerging nanotechnology, molecular oncology, 
computational design, and systems biologyto refine and optimize future therapeutics. 

Ultimately, cancer nanomedicine is poised to evolve from a promising innovation into a 
mainstream clinical reality. The convergence of precision targeting, adaptive delivery, real-
time monitoring, and scalable manufacturing will enable the creation of individualized 
treatment regimens that not only extend survival but also improve quality of life for patients 
across diverse cancer types. The momentum built between 2019 and 2024 suggests that the 
next decade could see nanomedicine become a cornerstone of cancer therapy, transforming the 
way we diagnose, monitor, and treat malignancies. 
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